Asymptotic Behavior of Greedy Policies

Ralph P. Russo and Nariankadu D. Shyamalkumar

August 2005

Technical Report No. 354
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Consider i.i.d. samples from two discrete distributions, each with a finite sup-
port on the set of positive integers. A match is said to occur between two sam-
pled members if they are from different populations and have the same value.
In an earlier work, motivated by a database problem in computer science, we
showed that the greedy policy for choosing the order of sampling from the two
sources maximizes the expected number of matches, uniformly across all steps -
hence beating the commonly used alternating policy. Here we study the asymp-
totic performance of both these policies. First, in contrast to the optimality of
the greedy, the almost sure limits and weak limits of the number of matches are
shown to be the same under both these policies. Second, we show that the dif-
ference in the expected number of matches between the greedy and alternating
policies grows at the rate of # to a positive limit - unearthing a measure in which
the greedy is asymptotically superior to the alternating. Third, study of the
weak limit of the difference in the number of matches between the greedy and
alternating policies (on the same sampled values, normalized by n'?, yields a
scale mixture of normals centered at zero - weakening the impact of the former
result.
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1. INTRODUCTION

Suppose that we toss a coin repeatedly. On each toss we may choose either of two coins;
one fair, the other two-headed. Let R(n) denote the number of heads obtained with the
fair coin, and S(xn) the number obtained with the two-headed, after n tosses. The object
is to find an algorithm for choosing the coin to use on the n-th toss so as to maximize
E(R(n)S(n)), the expected number of matches after n tosses, uniformly in # >= 1. If we
alternate between the two coins, then E(R(1)S(n)) ~ n%/8. However, it is shown in Shya-
malkumar et al (2005) that this policy is not optimal. In fact, an optimal policy in this case
is to toss the fair coin until heads occurs, switch to the two-headed coin for two tosses,
and then return to the fair coin to repeat the cycle (Corollary 1 of Shyamalkumar et al
(2005)).

The above problem is a simple special case of a more general preblem that we investigate
in Shyamalkumar et al (2005). That work was motivated by a specific database problem in
computer science (refer to it for details). Suppose that observations are made sequentially
and without replacement from two sources (populations) R and S whose members each
carry a single positive integer valued label. A match is said to occur between two sampled
members if they are drawn from different populations and carry the same label. The goal
is to generate matches as quickly as possible. An algorithm that chooses where (R or §)
to obtain the n-th observation, n >= 1, is referred to as a reading policy. An optimal reading
policy is one which maximizes the expected number of matches after n observations have
been made, uniformly in n.

Two reading policies of interest are the alternating policy, which alternately samples from
Rand S and the myopic (or greedy) policy, which chooses a source at each step so as to
maximize the expected gain in matches for that step. The alternating policy is easy to
implement, and requires no knowledge of R or S. Any policy with a fixed sampling order
(such as RSSRRSSRR...} for which the R sample size is always within one of the sample
size, is considered an alternating policy, as such policies all produce the same number of
expected matches after k steps (Theorem 1 of [1]). In contrast to the alternating policy,
the greedy policy requires a complete knowledge of Rand 8. It is a short term strategy
that optimizes the expected one step gain, with no explicit regard to future (two step
and beyond) gains. Note that there may be more than one greedy policy, as the greedy
criterion may be ambivalent between R and S on some steps.

When R or S is finite, it is shown in Shyamalkumar et al (2005) that an optimal policy
need not exist, that the alternating policies are optimal among the restricted class of non-
adaptive policies {those that ignore the information obtained from the samples), and that
any greedy policy dominates (and in most cases is strictly better than) any alternating
policy. When R and 8 are infinite, the problem reduces to i.i.d. sampling from those
distributions. In this case it is shown in Shyamalkumar et al (2005) that the alternating



policy is again optimal among the non-adaptives, and that the greedy policy is optimal
among all reading policies.

QOur goal here is to explore the asymptotics associated with the alternating and greedy
policies in the L.i.d. (infinite populations) case. Of interest is the strong and weak limiting
behaviors of M4 (n) and Mg(n) (the numbers of matches formed through the first n steps
by the alternating and greedy policies), and also their difference Mg(n) — Ma(n).

In our coin example, it is easy to check that the policy we claimed as optimal is a member
of the greedy class of policies. Note that this policy generates a renewal process {Tuly»1,

with a renewal occurring upon the observance of a tail, and an inter-arrival variable X 4

3Y+2, where Y =~ Geometric(1/2) withE(Y)} = 2. Now, using the CLT for renewal counting

processes (see Ross (1983), page 62) and that Mg(n) =~ (2/9)(n - N (1))?, we have
(Mc(n)—nz/S) d (0 1 )
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It is easy to show (via the ordinary CLT for i.i.d. variables) that the above result holds
when Mg is replaced by M. Law of the iterated logarithm results for N(-), Mg(:) and
M () are also easily obtainable. Dealing with E(Mg(1) — Ma (1)) requires a lighter touch.
Let P denote the transition probability matrix of the Markov chain whose states are RT
(tail), RH (heads with fair coin), SH (first heads with 2-headed coin), and SHH (second
heads with 2-headed coin). Since P is doubly stochastic, the vector of stationary proba-
bilities is uniform. This fact, together with the exact expressions relating N(n} and Mg (n)
for the various states (for example, Mg (n) = (1/9)(n — N{(n) + 1)(2n - 2N(n) — 1) when the
process is in state SH), geometric rate of convergence to stationarity and expectation of
the residual lifetime or overshoof (which, in this example, can be easily calculated without
recourse to the key renewal theorem) yield the following result:

() B®o0) - Mat) - . @

This is precise statement regarding the asymptotic superiority of the greedy policy over
the alternating policy. In this work we show that results of the type stated above for the
coin example hold true in the general case - the final theorem going beyond.

Conventions: All vectors carry a tilde, for example %. 1 denotes a generic vector of ones
whose dimension should be clear from context. For a vector %, |¥] will denote the absolute
sum of its components, ie. its LY norm. And for two vectors, ¥ and §, with the same
dimensions, ¥ - 7 will denote their inner product. Almost sure convergence will be de-

noted by =, convergence in probability by L, and weak convergence {convergence in
distribution) by 2,. In the case where the weak limit is a constant we interchangeably

use %5 and —. We denote the iterated logarithms by log,, i.e. log,(n) = log(log(n)).



2. ALTERNATING AND GREEDY PoLiciEs

A record from either source, R or S, carries one of the possible I {possible infinite) labels
1,...,L The probability that a single record from the R source (resp., the S source) carries
the i-th label, is 7; (resp., s;). The probability vectors (r1,...,77) and (s1,...,$;} are denoted
by 7 and §, respectively. The inner product of  with §is denoted by y, i.e. p = #-3. We shall
always assume u to be positive as otherwise there will be no common label between the
two sources. The labels on the #-th records read from the R and S sources are denoted
by Lr(n) and Lg(n). The above implies that {Lr(#)}s>1 and {Lg(n)},»1 are sequences of
independent and identically distributed random variables with

Pr(Lr(l)=i) =7, and Pr{ls(l)=i)=s;, i=1,...,1 3)

Associated with the sequences {Lr (11)}4»1 and {Ls(#)},>1 are the discrete time vector count-
ing process INR(1)}1>1 and {Ng(m)},»1; the first is defined by

#
NR(H) = (Nr(n,1),...,Nr(n,1)), with Nr(n,i) = Z I{Lg(j):i}/ i=1l...,n==21 (4)
=1

and the second is defined analogously.

A reading policy is a zero-one valued stochastic process with the convention that the
value 1 denotes a selection from source R and the value 0 a selection from source S.
Hence

1 if the n-th selection is from R;
Cn) = , n=12,... (5)
0 if the n-th selection is from S;

Associated with each reading policy are two counting processes {R(n)};»1 and {S(#)}>1
defined by

R(n):= ) C(j) and S(m:=n-R(m), n=12... 6)
j=1

These processes keep track of the number of records read from R and S, respectively,
after a total of n records have been read. Also associated with a reading policy is a non-
decreasing process {M(n)},>1; which counts the number of join returns, i.e. matches, gen-
erated by the first n records. Hence,

M(n) = Nr(R(n)) - Ns(S(n)), n=1,2,... (7)

Observe that all of the processes {M(n)}y>1, (R(n}}nz1 and {S5(n)},>1 depend on the reading
policy even though the notation does not make it explicit.



The filtration {F,},»1 is defined by
Fas1:= FrVa(Lr(1),..., Lr(R(M)); Ls(1), ..., Is(S())), n=1,2,... (8)

with Fj being arbitrary. F; for example could contain all the information needed for
randomization. All reading policies will henceforth be assumed to be adapted to the
above filtration - they form the set of all implementable reading policies. Note that the
filtration itself depends on the reading policy.

We define a alternating policy as one for which
R(2ny=n, n=12,... )

Any reading policy in Cya which satisfies (9) is called an alternating policy. In words,
an alternating policy is one which does not use any information from the records, and
under which at any step the numbers of records read from the two sources are within
one of each other. There exists a large, if not an infinite, number of alternating policies.
For our purposes Ca will denote the canonical alternating policy which strictly alternates
between the two sources with the first pick being from R. Hence,

Calmy=nmod2, n=12,... (10)

From the point of view of implementation, it may be more efficient to work with the
alternating policy given by

C(n) = Ijymoda<2p, 1=12,... 11)
as it, leaving apart the first record, reads two records at a time from the chosen source.

Policies that utilize knowledge of 7 and §, together with the information contained in the
records that have been read, in order to optimize the choice for the next step are referred
to as greedy policies. Towards a more precise definition, we observe that

EM(n + 1) = M(1)|F11} = E(Ns [S(n), Lr (R(1) + D)]| F11)Cln + 1)

(12)
+ E(NR [R(n), Ls (S() + DI Fps1) (1 = Cn + 1))

The above implies that any C(-) maximizing the above conditional expectation should
satisfy, forn > 1,
1 if E(Ns [S(n), L (R(n) + 1)) Fs1) > E(NR [R(), Ls (S(n) + DI Fr);
Cn+1)= .
0 if E(Ns [S(n), Lr (R(r) + DIFps1) < E(Ng [R(1), L (S() + DI Frs);
(13)

Note that at every step where



E(Ng [S(1), Lr (R(1) + I Fi1) = E(NR [R(n), Ls (S(n) + D Fr41), (14)
two greedy policies may differ as the greedy criterion is ambivalent.
As {Lg(n)}n>1 and {Lg(n)},»1 are sequences of i.i.d. random variables, we have
E(Ns [S(m), Lr (R(1) + D)]|Fu1) = Ns (S(m)}-F, n=1,2,... (15)
and
E(NR [R(1), Ls (S(n) + DI Fus1) = Nr R(m)) -5, n=1,2,... (16)

Yor further analysis it is important to realize that Ng (S()} - # and Ng (R(n)) - § are both
sums of i.i.d. observations. To make this explicit we define

XRr(n) =510 and Xg(m):=rreen, n=12,... (17)

The two sequences {Xg (n)}y»1 and {Xg (1)},»1 are sequences of i.i.d. random variables
with common mean i and variances o} and oé, respectively. We shall denote their partial
sums by I'g [-] and F'g [-], i.e.

elr)=) Xg(j) and [snl=) Xs(), n=12... (18)
j=1 j=1

Now, we can write
Ng(S(m) -F=Ts[S(n)] and Ngr(R#))-§=Tr[R(n)], n=12,... (19)

Hence (13) simplifies to
1 ifIs[S(m)] > Tr [R(1)];
Cn+1)= m=1,2,... (20)
0 ifTs[S(mM] <Tr [R(M)L

We observe that the implementation of the greedy algorithm is greatly facilitated by the
representation (20).

For our purposes Cg will denote the canonical greedy policy which chooses from the
source R whenever there is a tie, i.e. whenever E(Ng [S(n), Lr (R(n) + 1)]|F41) is equal to
E(NRr [R(n), Lg (S(n) + 1)]1Fy+1), and whose first pick is from R.

All quantities with a subscript of G (resp., A} will denote quantities corresponding to the
canonical greedy (resp., alternating) policy Cg (resp., Ca).

3. SeLectioN Ratio oF A Greepy PoLricy



In this sub-section we discuss the asymptotic behavior of Rg(n) as n increases to infinity.
For this purpose an important fact, following from the definition of a greedy algorithm,
is that

Tr[Rg(W)] -Ts[Sc(m)]l<y, n=12,...; wherey:=maxr; V maxs; (21)

l<i<l = l<i<l
Theorem 1 For the greedy reading policy Cg we have,
R _ 02 + 0%
(G—(n)__.f/_z) A, N(O, a?{ ) as n — oo; g% —{_R_8 (22)
N7 G G 812

Theorem 2 For the greedy reading policy Cg we have,

noeo [20% nlogyn e 205 1log,n

Lemma 1 In the case of the greedy algorithm we have

-1 (23)

[r[*x)] <Tsln=[x]l-y = Rgm)>x = Trllx]]<Tsin—[x]]l+y, 0<x<n (24)
Proof Since I's[] and I'r [-] are non-decreasing, for 0 < x < n, we have by (21)
Ro()>x = Isllxll <Te[Ro(mI<Ts(Sc (il +y <Tsbr—lell +y.  (25)
The other half follows by observing that for 0 <x < n,

Rgm<x = Tr[xl]2Tr[Rc@]2Ts[Scm)]-y=2Ts[n—[x]]-y. (26)

§
Proof of Theorem 1 First, we will argue that
TRkl =Tsn -k a 1.5 2 2
Z{n) = — N (2" ux, 05 +0%), asn— oo 27
for any sequence {ky)y>1 satisfying
nm(@:ﬂg):x (28)
n—co \/ﬁ
To this end note that
L Xe()=kat] (D" Xs()-(n-kau]
Z(n) = ay o5 by = k)05 +cp2' 7 px (29)

d
SN@2) 3N(,02)



where the three sequence {a,}y51, {Un}u>1 and {cylqs1 all converge to 1. The above observed
weak limits are due to the ordinary central limit theorem. By independence of the first
two terms in (29) and Slutsky theorem we have (27). Now defining Z. and Z* as Z but
with the sequence [k, );>1 taken to be {[1/2 + xyn1ln>1 and {[7/2 + xvn}us1, respectively,
we have

Z,(n) R N(Zl'syx, a%{ + O’é) and Z*(n) AN (21'5px, a%{ + ag), asn— oo (30

Now by Lemma 1 we have

Pr (Z\.(n) < 4 ) <Pr (w > x) < Pr (Z*(n) < —y—-), forlarge n and x € R

\Vn/2 \n Vn/2
(31)
which combined with (30) completes the proof. §

Proof of Theorem 2  Let {ky}s»1 be sequence of non-negative integers and {a,};>1 a
sequence of reals such that

kn —11/2 5C>0 and 4, = L , ¥Ynzl (32)

20k, 1ogy 2% + 3)( ~ ) Loy — ki)

For such a sequence {k,};>1,

ay (T [ku] = Ts [ — kul)
=a,(Ir[n~ky] -Ts[n- kal) +an (rR lkul =Trn —ky]l — (2ky — ”)P) + by (33)
N —

liminf =—1 a.s. now
H=—00 0 C

where the first limit infimum is due to the standard law of iterated logarithm, the second
limit due to Theorem 5.1 of Hanson and Russo (1983) on lag sums and the third limit as a
consequence of (32). Hence for a sequence {k,},»1 satisfying (32) we have

liminfa, (Tr [ke] = Ts[n ~ks]) = C~1 (34)

Using (34) and Lemma 1, with k, equal to [n/ 2+(1-¢) /2012{(371 log, n] we have
RG (T’l) —H / 2

208 logy 1

Now similarly, working instead with k; equal to ln/Z + (1 +¢€), /20%611 log, n}, we have

> 1 — ¢ infinitely often (i.0.) a.s., Ye > 0 (35)



RG (?’1) - ?’1/2

\ /20’%(}?‘1 log, n

Now (35) and (36) are equivalent to the first statement in (23). A similar argument leads
to the other. §

> 1+ € only finitely often a.s., Ye > 0 (36)

4, Asymrrotic BEHAVIOR oF M(:)
Theorem 3

i. For any reading policy satisfying

n0% (%”) —~ 0.5) 2%, (37)
we have
N [(’:f/(;))z - ,_1] <, N (0,2(c% + 03)) (38)
ii. For any reading policy satisfying
1(1”) %% we(0,1) and Vn (R(” ) 2% g (39)
we have
N~ [a(l (T;))n2 y] d N[O, [(1 - :Z)lofj :)ao%]] (40)

Theorem 3 can be generalized to the case when {R(n)},»; is independent of the labels and
is asymptotically normal.

Theorem 4 For any reading policy satisfying

- (R(") 05) 5 0.5, (41)
log,n\ n

lim sup\j 5 112 [mf\/f/(;))z - p] =1, as. (42)

nco  \4og +og)logyn

we have

and



liminf\/ ki M) p] = -1, as. (43)

n—o \4(o% +og)log, n | (n/2)?

Corollary 1 For both the canonical greedy and alternating policies we have

Min d
Vi [(n/(z))’l _ P] 5 N(0,2(c% +03)) (44)
Proof The result follows by (10), Theorem 2 and Theorem 3. §

Corollary 2 For both the canonical greedy and alternating policies we have (42) and
(43)

Proof The result follows by (10}, Theorem 2 and Theorem 4. 8

Lemma 2 Consider a reading policy satisfying

\a, (Rf:) - a) 2%0, forsomea€(0,1) (45)
where {a,},>1 is a sequence sﬁch that
limag, =00 and a,= o( " ) (46)
log, n

For such a reading policy and sequence {a,},»1 we have,

M) (1 - )R [R(#)] + al's [S(m)] as,
la(l—am? a(l—a)n * P] —0 47
Proof First, we observe that
M@m)  (-a)r[R(m)] +als [S(M] Nr (R(m)) 7. Ns (S(m)) ~3| s
a(l — oz)n2 a(l—a)n = an 1-an
Now by Cauchy-Schwartz inequality we have
. (NR (R(m) _ F) (Ns (S(m) S)’
an (1—a)n
(49)

\Ebl - Bl

i=1 i=

All of the summands in (49) go to zero almost surely due to the standard law of iterated
logarithm and (45) by arguments similar to

10



ﬁdmmwﬂ_q

an
_ {anlogy R(n) [R(n) R(n} (Ngr[R(n),i Y} Rn) Yas . (50)
"\ R ( o ) 1og2R(n)( R(n) _r‘)”‘ o (W 1) 0
—_———
2%0 by (45) and (46) bounded by LIL 250 by (45)
Hence the proof. §

For the following result we shall need the filtration, say {G,},»0, defined as
Ga=GoVo(r@),...,Lg(R(n);Ls(1),...,Ls (S(m)), n=12... (51)
with Gy containing all the information needed for randomization by C.

Lemma 3 For any reading policy such that

5% 2% w e (0,1), (52)
we have {Y}}y»1 defined by
Y, = (1 -a)'R[R()] +alg[S(m)] — [an+ (1 —2a)R(m)]u, n=12,... (53)

is a {Gy)y>1 martingale with bounded increments. Moreover, it satisfies the following:

i. {Yulp»1 suitably normalized is asymptotically normal, that is

Yy d 2 2
~————— — N|(0,(1 - a)og +ac (54)
Va(l—am ( R S)
ii. Moreover, we have
limsup Yn = \/(1 - a:)cr%{ + aag , a.8. (55)

i—00 \/204!(1 - a)n 10g2 n

and

. . YTI
liminf
noeo (2e(1 —ajnlogy n

= -1 - 2)o} +ad}, as. (56)

Proof TFirst note that

(1-a)(Xr(R(m) — ), ifC(n)=1;
Dyi=Yy—Y,q = , n=23,..;D:=Y, (7
& (Xs (Sm) — ), if C(n) = 0;

i1



As C(n) is G,—1 measurable and both Xg (R(n)) and Xg (S(n)) are independent of G,_; we
have,

B(DulGn1) =0 and B(DjlCum1) = (1~ af’ajCln) + aa5(1 - C(n))  (58)

Moreover as D, is bounded and Y, is G, measurable, we have {Y}};>1 is a {G;}>1 martin-
gale with bounded increments. Now as a consequence of (58) we have

% sz E(D2IG-1) = (1 - a)zofi@ + azaéﬁ(ni) 25 a1~ ) ((1 - a)ok +acf)  (59)

which by using the martingale central limit theorem, see for example Theorem 7.4 of
Durrett (1991), leads to (54). The law of the iterated logarithm, (55) and (56), follows from
the same for martingales - see for example Theorems 1 and 2 of Stout (1970). §

Proof of Theorem 3 First, observe that by Lemma 2,

ﬁ[ M) p] ind \/ﬁ[u—mrkm(n)]mrs IS(nn_zP] )

a(l—am? a(l —am

have the same weak limit. Now observe that the latter term can be written as

] ]

(1—a)n a(l-a)]| n

N0, by Lemma 3 0 by (37) or (39)

where {Y,},>1 is as defined in (53). The first term on the right is asymptotically normal by
Lemma 3 and the second term converges almost surely to zero by the assumptions (37) or
(39). Hence by Slutsky theorem we have (38) and (40). §

Proof First, observe that by Lemma 2,

n [ Mn) ] nd n [TR [Re)]+Ts [S(m)]
4ok +03)logy 1 [ (n/2)? K (0% +0%)log, n n K

(62)

have the same limiting behavior in the almost sure sense. The latter term is nothing but
Vi

\/0.2511(0%{ + 0%} log, n

, (63)

where {Y),>1 is as defined in (53) with a taking the value 0.5. Now (42) and (43) follow
from Lemma 3. &

5. RELATIVE PERFORMANCE OF (GREEDY v/s ALTERNATING

12



All the asymptotic results for the number of matches so far have been exactly the same for
both the greedy and alternating policies. But Corollary 1 of Shyamalkumar et al (2005),
showing optimality of the greedy, makes it interesting to study the asymptotic behavior
of the difference in the number matches. First, we study the expected difference in the
numbers of matches which concludes with Theorem 5 below. Second, we study the weak
limit of the difference in the numbers of matches and this is identified in Theorem 6.

In the following we will need the filtration {G,},»0 defined as
gn:gOVO'(LR(].),...,LR(RG(Tl))}LS(1),...,Ls(SG(Tl))), n=1,2,... (64)

with Gy containing all the information needed for randomization by not only Cg but also
Ca. The argument below is based on the sequence of random times {Ty},»1 defined as

Tn:inf{kzlsc(k+1)=[g}+1 or RG(k+1):m+1}, n=1,2,... (65

It is easily checked that {Ty},»1 is a sequence of {Gy},»0 stopping times. Similar to Lemma
1, it can be shown that for positive x

(n—Tn) >x = Tr{[n/21] <Tg{ln/2) - x|l+y or Ts[[n/2]] < Tr [l1n/2] - [x]]+y (66)
and
I'r[[n/21] < Ts[ln/2) —[x1] or [ [[n/2]] < Tr[ln/2] = [x1] = (m—~Tx)>x  (67)

Theorem 5 For the canonical greedy and alternating policies we have

_ 02 + o>
lim (E(MG(n) MA(”))) __R""S (68)
00 n 8‘Lt
Theorem 6 For the canonical greedy and alternating policies we have
—_ 02 + a>
(Mc(ﬂ) MA(")) RN Pl ki) (69)
nyn—Ty 8

The following lemma describes the weak limit of Tp.

Lemma 4 For the above defined stopping times {T},»1 corresponding to the greedy
reading policy Cg we have,
(n—-Ty) 4
— =

24n

where aic, the asymptotic variance of Rg (1), is defined in (22).

|N (o, a§0)| as 1 — oo (70)

13



Proof The proof follows along similar lines as Theorem 1 - the only change being using
(66) and (67) instead of Lemma 1. §

The following lemma describes the behavior of {Rg (1) —Rg (Ty)}ux1 relative to {rn—Ty )1

Lemma 5 For the above defined stopping times {Ty};»1 corresponding to the greedy
reading policy Cg we have,

Rg (n) — Rg (Ty)

P 1
— 71
n— Ty - 2 asm = oo @)
Proof Lirst, we show that
Rg (1) ~ R (Tn) Lo, asn— oo (72)

log(n)

Towards this end, observe that using (21) twice we have

|Tr [Re (m)] - I'r [Re (Tw)]) - (Ts [S¢ ()] = Ts [Sc (Ta)])] < 2y (73)
which implies that for any positive K
n—Ty,—Klog(n) Klog(m)
Ra (M) -Ra () <Klog(n) = Y. Xs(i+Sc(Ta)=2y< ), Xr(i+Rc(Tu)
i=1 i=1

(74)
The second expression can be rewritten as

~TyK1 . KI )
T Xs i+ S (T) —p) Zg“ Xr (i + Ra (Tw) ~
o= yn— Ty — Klog(n) ] vKlog(n) (75)
<2y - y(yfn = T, — Klog(n) — yKlog(n))
As 179 (n —Ty) goes to infinity in probability (Lemma 4) we have the independent terms
on the left converging to normal distributions and the term on the right converging to

negative infinity. Hence the probability of the above event converges to zero. Now using
(74} we have (72). Combining (72) with Theorem 2 we have

Rg(n)=Rg(Ty) P

P
Rg(n) — o0 and Tog(Ra () —> 00, asmn-— 0o (76)
The above with Theorem 5.1 of Hanson and Russo (1983) on lag sums gives us
I'n [R ()] - Tr [Rg (Tn)l) Py (rs [Sc ()] ~Ts[Sg (Tn)l) T o
Rg (1) — Rg (Tw) Sc (1) — S (Tx)

where the second part follows by symmetry. This with (73) along with (72) gives us
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RG (n) - RG (Tn) P
Scm =S (T " (78)

which is equivalent to (71). §

Observe that the above implies that

Rg (m) - Rg (Th) _ (RG (n} — Rg (Tn)) (n = T
VE - Tn V‘E
where the convergence in probability of the first term follows from (71) and the weak con-

vergence to the folded normal of the second term follows from (70). In fact, the stronger
result

) 4, |N (O, aﬁc)| asn — oo (79)

R () = Rg (Tr) = 05(n — Ty) i)
Vr—-Ty

can be shown using an argument similar to that of Theorem 1 - we refrain from doing so
as this result is not needed for our purpose.

N (O, O%{G) asn — oo (80)

The following lemma addresses the following uniform integrability of two sequences that
we shall need below.

Lemma 6 For the canonical greedy policy, the following two sequences

Rg (n) ~n/2 2 (n—Tn)2
{( \/ﬁ ) }1121 ne { w/ﬁ n=1 (81)

are uniformly integrable.

Proof First we show the uniform integrability of the first sequence above. Let k =
Ln/2 + vtn). By Lemma 1 we have

Pr(Rg () > n/2 - Vn) < Pr(Tr [k} <Ts[n— Kkl +7) (82)
Observe that
T's [n— k]-Tr [k]+(2k—n)p = [Ts [n — k] = Tr [n — K]]-[Tr [K] ~ Tr [ — k] = 2k — n)p] (83)

which implies that the term on the left is a sum of k independent zero mean random
variables taking values in [-y, y]. This along with Hoeffding inequality, for example see
Serfling (1980), implies

Pr(Trlk] < Tg[n—k]l+y) <exp {—E;;[(Zk — M — y]z} (84)

Working with the upper bound above and using the inherent symmetry we get the fol-
lowing simple upper bound

15



RG (?’I) i ?’1/2

2 2 2
Pr[ 7 >t]sZexp{—(%) \/f}, Vi 1; Vn2(2+£) (85)

And since this bound is integrable and is free of n we have the uniform integrability of
the sequence in (81).

For the second sequence the uniform integrability follows from an argument similar to
the above - the only change being using (66) and (67) instead of Lemma 1. §

Lemma 7 For the canonical greedy policy and the sequence of stopping times {1} }>1
defined in (65) we have

2
lim ~E([Nix (R (1)) - Nig (Re (T)] - [Ns (S () - Ns (Sa (Ta)]) = 2= (86)

H—oo 1

Proof First, we will show that

[NR(RG(”» Nr (Rg (Tn)) {NS(SG (n) - NS(SG(Tn))]
Rg (n) = Rg (Ty) Sg (n) = Sg (Ty)

Note that, by symmetry and Slutsky theorem, it suffices to show that forany jin{1,2,...,1},
we have :

NR[RG(T’!);j]—NR[RG(Tn),j]]L |
[ Rg (1) — Rg (Ty) Ti (88)

Now (76) coupled with Theorem 5.1 of Hanson and Russo (1983) on lag sums gives us
(88) and hence (87).

Second, we have by Lemma 5 and Slufsky theorem that

Rg () — R (Tn)} (S ()} — S (Tw)} P
( 0.5(n = Tx) )( 0.5(n —Ty) ) —1 (89

Combining (87) and (89) with Lemma 4 and using Slutsky theorem, we have
2 4 2

(%) [ (Rq () ~ N (Ro ()] - [Ns (S () = N (S (T)] = (ORSLGS ] (1) ©0)

Now observe that the sequence in (87) is a non-negative sequence bounded above by Iy
and that the non-negative sequence in (89) is bounded - by say, 2. These along with the
uniform integrability of the sequence {n~! (1 = Ty)}*}y>1 provided by Lemma 6 gives us the
convergence of the expectation. Hence the preof. §

Proof of Theorem 4 Working on the set {Rg (T} = [1/21}, we have
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Mc(n) - Ma(n) = (Nr (Rg (1)) - N (Tn/21)) - Ns (S (T»))
+ (N (Rg () — Nr (17/21)) - (Ns (S (m)) - N (Sc (Ta)) ~ (91)
— N (fn/21) - (Ns (Ln/2]) - Ns (S ()))

The first term on the right can be written as

(N (Rg () = N& (I7/21) = [Ra () - [1/21]7) - N5 (S (T) + [Rg (1) — [n/211Ts [Sc (T)]
(92)

where the first term has a conditional expectation of zero on the set {Rg (T;) = [1/2]} as
it is the (n ~ T,;)-th term of a zero martingale. The argument for the latter is similar to that
found in Lemma 3. Now the third term on the right of (91) can be written as

Nr (Fn/21)'(Ns (ln/2]) = Ns (Sg () - [Rg (n) — [n/21] §)+[Rc; (n) = n/21]Tr [Tn/21] (93)

where the first term has a conditional expectation of zero on the set {Rg (T};) = [n/2]} as
it is independent of G, (2 Or,) and conditioned on G, has zero mean. Using symmetry
along with (92) and (93) leads to

% [EMa () ~ Ma(m) - E([Nr (Rg (1)) — N (R (T)] - [Ns (S () - Nis (S (T)])

< ~E(Tx [R (T)] = i [SG (T RG (2) — /21
IRg () - rn/zu) o

< yIE( "

(94)

where the convergence to zero of the last term follows by Lemma 6 and Theorem 1. The
theorem follows now by using Lemma 7. §

For our final theorem we will need a uniform central limit theorem for a class of policies
which can be described as greedy with offsets. This is the content of the next lemma; below
we describe some needed notations. Let G, for 6 € [-y, v], be a policy such that
1 ifTg[S(n)] > I'r [R(n)] + &;
Cga(n+1)=[ nm=1,2,... (95)
0 ifTs[S(n)] < Tr[R(n)] +&;

Let {X§ (m)}iz21 and {Xg()}y>1 denote two auxiliary sequences of i.i.d. random variables

with X5, d Xr and X§ 4 Xs. Also let I'p () and I'y(-) denote their respective partial sums.
Now we define the sequence of random variables { Yﬁ}nzl and {z?,},,zl ,ford €[—y,y], as

17



Yl = . [T& [Re, 0] - T (Rg, )], n>1 96)

\J0.5(0% + 05)n

and

78 = ! [Ts[Sc, ] - Tx (Se, )], n=1 (97)

0.5(c} + o3)n

Lemma 8 There exists a K > 0 such that

sup |Pr (Y8 < t) - d@)| < KnT log(n) (98)
e g
€
and
e (2} ?
sup |Pr (Zn < t) - <D(t)| < Kn7 log(n) (99)
teR

Proof It suffices to show (98) as (99) follows by symmetry. Towards this, we need
{Gm b0, a filtration, defined for m > 1 as

Gu=GoVo{Lr()),...,Lx (Rg,(m);Ls (1), ..., Ls (Sc,(m)); Xp (D), ..., Xg (Re,(m))
(100)

with Gy containing all the information needed for randomization by Cg,. Also, we define,
for a fixed n > 1,

X (Ra, 0 )X (R, ()

, ifCq.(my=1; Y
Dy, = +J0.5(0% +a3)n Gs(7m) , m=2,23,...,1m D= \/—1_ (101)
n
0, if Cg,(m) = 0;
By construction,
) :
Z D; = Yg and maxD; < n1/2 N — (102)
i=1 = +J0.5(c% + 02)

As Cg,(m) is G;,—1 measurable and both Xg (RG é(m)) and X (R(;a(m)) are independent of
Gm-1 we have,

2
E(DulGmei) =0 and E(D§,|G”,_1):(E)Cgé(m), m=1,2,...,n (103)

18



Hence, as DQI is G, measurable, { :’;l Di}1<m<n is a martingale. Now, as a consequence of
(103) we have

n

v2:= Y E(DAG) = (%)Rcb(n). (104)

i=1
This implies that
Rgy(n) —n/2
(| —1] > n71/2 log(n))z) = Pr( %
By an argument similar to that in the proof of Lemma 6 we get, analogous to (85),
S o) (3
Pr||—2 >t|<2expi—|=| Vi;, VEx1;Vn>4[1+% (106)
([ Vn Iy u

Combining (105) and (85) we get

> (%)(Iogw))z) (105)

Pr(|V3 -1| > n7'*(log(m)?) < AL, vis1 107
r( s—1>n (og(n)))_exp? pak nz (107)

Using the inequalities in (102) and (107) we have (98), for some K free of §, as an appli-
cation of Theorem 3.7 (along with the remark (ii) following it) of Hall and Heyde (1980).
Hence the proof. §

For the following lemma, we define the sequence of random variables {G};»1 as

(Tr [Rc )] - Tr [[#/21]} - Ts [[#/2]] - T's [Sg (n}]) on Ay;
2G, = (108)
(Ts[Sq ] -Ts[[n/21]) — (Tr [ln/2]] - Tr [Rc (n)]) on Aj;
where the sequence of events {A,},»1 is defined by A, := {Rg (T) = [n/2]}.
Lemma 9
Mg(n) — Ma(n) _ Gy _d_) = o0
( T ) - Qasn (109)

Proof We start with a decomposition analogous to (91),
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Mg () = Ma(n) 1

- Gu = (1) (W (R () = R (/2D)) - (Ns (S () ~ N (S (T:)

H
+1,| (N (Rg (1) - N (R (T) (N—S—(Sg(—” _ 058
— (s (Ln/2)) - s (S (1)) - (w _ 0.5?)
+ L (Ns (S () ~ Nis (S (T) (w 057

- (R (1/20) - N (Re () (w - o.5g)]
(110)

We will now proceed to show that each term on the right of (110) divided by Vi - T,
converges in probability to zero. For the first term the result follows from (90) and Lemma
4. The second and third terms on the right of (110) are similar (by symmetry) and hence
it suffices to show that the second term divided by vn — T}, converges in probability to
zero. First,

Nk (Rg (m) = N (Rg (Tw)) _ (NR (Rg (m) = Nr (Re (Tn))) [V“ _ Tﬂ] =50, (111)

i = Tynd/8 n—"T, 1318
bounded L0 (Lemma 4)
And, by a similar argument,
(Ns (Ln/2) — s (S (n))) ., 112
V= T8

Second , we observe that

/2= Rg (In) _(1/2=Rg (Ty) \[maxn — T, ] »
nol® - (max(n — T, 1)) { no/8 } 0. (113)

bounded P, (Lemma 4)
Third,

n_sfs(NR (R;; Tn) 4 Sf)

_ [RG (Tn)r” (NR(RG (Tu) — Rg (Tn)f)_(nlz—Rc (Tn))i,o_ (114)

n Rg (T)*/® n/8
——

bounded by 1 2.0by (88) by (113)
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The convergence in probability to zero of the second term divided by vn — T, now follows
by appealing to symmetry and repeated application of (111), (112) and (114). Hence the
proof. §

Proof of Theorem 5 In view of Lemma 9, it is sufficient to show that

2 2
Gn d ( UR+US

— NJ|O
i — Ty 8

Towards this, we first observe that, foru € R, on A,

] asn — oo (115)

x| TR (Re ()] = Tr [[1/2]) = (Ts ln/2)]) ~ Ts [Sa (m)) _,

\/0.5((;; +o2)n—T)

Or, | =Pr(Yi, <u) (116)

and on Af,

(Ts[Sg (m)] = Ts[[n/2]]) — Tr [ln/2]] = TR [Rg (n)]) <
\/0.5(0%{ +02)(n - Ty)

where A, :=I's [Sg (Ty)] = I'r [Rg (1)]. This, along with Lemma 8, leads to

Pr

u‘gr,r =Pr(z3, <u) (117)

r Gn
\/0.125(0% +03)(n = Ty)

P <u|- o)

= L Pr (YﬁjT” < u) dP + L . Pr (Zﬁﬁn < u) dP — ®(u) o
<K E(max [l,(n - Tn)'_dl log(n — Tn)]) — 0, asn — oo.
Hence the proof. §
Corollary 3 For the canonical greedy and alternating policies we have
(MG(n) ;-zé\/IA(n)) 4 Fasn — oo (119)
nl.
where F is a scale mixture of normals centered at zero given by
F= j N(0,0%dG(6?), where G := ‘N (O, %] (120)

Proof The proof follows by using Theorem 6, Lemma 4 and the asymptotic indepen-
dence between the two terms on the right side of the equation below.
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(Mc(n) - MA(")) _ (MG (1n) — MA(ﬂ)) n=Ty (121)
§
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